Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.853
Filtrar
1.
Small Methods ; : e2400127, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623969

RESUMO

Stabilizing the Zn anode/electrolyte interface is critical for advancing aqueous zinc ion storage technologies. Addressing this challenge helps minimize parasitic reactions and controls the formation of Zn dendrites, which is fundamental to achieving highly reversible Zn electrochemistry. In this study, 2% by volume of dimethyl sulfoxide (DMSO) is introduced into the baseline zinc sulfate (ZS) electrolyte, which acts as an efficient regulator to form a robust solid-electrolyte interphase (SEI) on the Zn anode. This innovative approach enables uniform Zn deposition and does not substantially modify the Zn2+ solvation structure. The Zn||Zn symmetric cell exhibits an extended cycle life of nearly one calendar year (>8500 h) at a current density of 0.5 mA cm-2 and an areal capacity of 0.5 mAh cm-2. Impressive full cell performance can be achieved. Specifically, the Zn||VS2 full cell achieves an areal capacity of 1.7 mAh cm-2, with a superior negative-to-positive capacity ratio of 2.5, and an electrolyte-to-capacity ratio of 101.4 µL mAh-1, displaying remarkable stability over 1000 cycles under a high mass loading of 11.0 mg cm-2 without significant degradation. This innovative approach in electrolyte engineering provides a new perspective on in situ SEI design and furthers the understanding of Zn anode stabilization.

2.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1091-1101, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621916

RESUMO

This study aimed to systematically evaluate the effectiveness and safety of Tanreqing Injection in the treatment of severe pneumonia in the elderly. Eighteen randomized controlled trials(RCTs) involving 1 457 elderly patients with severe pneumonia were included in the study after conducting searches in both Chinese and English databases as well as clinical trial registration platforms. The quality of the included studies was assessed using the Cochrane risk of bias assessment tool. Meta-analysis were conducted using RevMan 5.4 and Stata 17 software, and trial sequential analysis(TSA) was performed using TSA 0.9.5.10 beta software. Meta-analysis results showed that compared with conventional western medicine treatment, Tanreqing Injection + conventional western medical significantly improved the clinical effectiveness in elderly patients with severe pneumonia(RR=1.26, 95%CI[1.20, 1.32], P<0.000 01), arterial oxygen partial pressure(SMD=6.23, 95%CI[3.29, 9.18], P<0.000 1), oxygenation index(SMD=11.72, 95%CI[4.41, 19.04], P=0.002), reduce procalcitonin(SMD=-6.16, 95%CI[-8.10,-4.21], P<0.000 01), C-reactive protein(SMD=-8.50, 95%CI[-11.05,-5.96], P<0.000 01), white blood cell count(SMD=-4.56, 95%CI[-5.73,-3.39], P<0.000 01), and shortened the duration of fever(SMD=-3.12, 95%CI[-4.61,-1.63], P<0.000 1), cough(SMD=-4.84, 95%CI[-6.90,-2.79], P<0.000 01), lung rales(SMD=-0.99, 95%CI[-1.54,-0.44], P=0.000 4), and mechanical ventilation time(SMD=-3.26, 95%CI[-5.03,-1.50], P=0.000 3), increase CD4~+ T-cell levels(SMD=6.73, 95%CI[5.23, 8.23], P<0.000 01) and CD8~+ T-cell levels(SMD=7.47, 95% CI[5.32, 9.61], P<0.000 01) with no significant adverse reactions. TSA confirmed the stability and reliability of the results related to clinical effectiveness. This study suggests that Tanreqing Injection, as a Chinese medicinal preparation, has a significant therapeutic effect and good safety profile in the treatment of severe pneumonia in elderly patients. Due to the limited quality of the included studies, high-quality RCT is still needed to provide evidence support for the above conclusions.


Assuntos
Medicamentos de Ervas Chinesas , Pneumonia , Humanos , Idoso , Reprodutibilidade dos Testes , Pneumonia/tratamento farmacológico , Medicamentos de Ervas Chinesas/efeitos adversos , Tosse/induzido quimicamente
3.
Signal Transduct Target Ther ; 9(1): 79, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38565886

RESUMO

Fluoropyrimidine-based combination chemotherapy plus targeted therapy is the standard initial treatment for unresectable metastatic colorectal cancer (mCRC), but the prognosis remains poor. This phase 3 trial (ClinicalTrials.gov: NCT03950154) assessed the efficacy and adverse events (AEs) of the combination of PD-1 blockade-activated DC-CIK (PD1-T) cells with XELOX plus bevacizumab as a first-line therapy in patients with mCRC. A total of 202 participants were enrolled and randomly assigned in a 1:1 ratio to receive either first-line XELOX plus bevacizumab (the control group, n = 102) or the same regimen plus autologous PD1-T cell immunotherapy (the immunotherapy group, n = 100) every 21 days for up to 6 cycles, followed by maintenance treatment with capecitabine and bevacizumab. The main endpoint of the trial was progression-free survival (PFS). The median follow-up was 19.5 months. Median PFS was 14.8 months (95% CI, 11.6-18.0) for the immunotherapy group compared with 9.9 months (8.0-11.8) for the control group (hazard ratio [HR], 0.60 [95% CI, 0.40-0.88]; p = 0.009). Median overall survival (OS) was not reached for the immunotherapy group and 25.6 months (95% CI, 18.3-32.8) for the control group (HR, 0.57 [95% CI, 0.33-0.98]; p = 0.043). Grade 3 or higher AEs occurred in 20.0% of patients in the immunotherapy group and 23.5% in the control groups, with no toxicity-associated deaths reported. The addition of PD1-T cells to first-line XELOX plus bevacizumab demonstrates significant clinical improvement of PFS and OS with well tolerability in patients with previously untreated mCRC.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Oxaloacetatos , Humanos , Bevacizumab/uso terapêutico , Capecitabina/uso terapêutico , Oxaliplatina , Neoplasias Colorretais/tratamento farmacológico , Fluoruracila/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Imunoterapia
4.
Angew Chem Int Ed Engl ; : e202402139, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563765

RESUMO

The development of artificial receptors that combine ultrahigh-affinity binding and controllable release for active guests holds significant importance in biomedical applications. On one hand, a complex with an exceedingly high binding affinity can resist unwanted dissociation induced by dilution effect and complex interferents within physiological environments. On the other hand, stimulus-responsive release of the guest is essential for precisely activating its function. In this context, we expanded hydrophobic cavity surface of a hypoxia-responsive azocalix[4]arene, affording Naph-SAC4A. This modification significantly enhanced its aqueous binding affinity to 1013 M-1, akin to the naturally occurring strongest recognition pair, biotin/(strept-)avidin. Consequently, Naph-SAC4A emerges as the first artificial receptor to simultaneously integrate ultrahigh recognition affinity and actively controllable release. The markedly enhanced affinity not only improved Naph-SAC4A's sensitivity in detecting rocuronium bromide in serum, but also refined the precision of hypoxia-responsive doxorubicin delivery at the cellular level, demonstrating its immense potential for diverse practical applications.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38594563

RESUMO

To elucidate the effects of long-term (20 years) afforestation with different woody plant species on the soil microenvironment in coal gangue polymetallic contaminated areas. This study analyzed the soil physicochemical properties, soil enzyme activities, soil ionophore, bacterial community structure, soil metabolite, and their interaction relationships at different vertical depths. Urease, sucrase, and acid phosphatase activities in the shallow soil layers increased by 4.70-7.45, 3.83-7.64, and 3.27-4.85 times, respectively, after the restoration by the four arboreal plant species compared to the plant-free control soil. Additionally, it reduced the content of available elements in the soil and alleviated the toxicity stress for Cd, Ni, Co, Cr, As, Fe, Cu, U, and Pb. After the long-term restoration of arboreal plants, the richness and Shannon indices of soil bacteria significantly increased by 4.77-23.81% and 2.93-7.93%, respectively, broadening the bacterial ecological niche. The bacterial community structure shaped by different arboreal plants exhibited high similarity, but the community similarity decreased with increasing vertical depth. Soils Zn, U, Sr, S, P, Mg, K, Fe, Cu, Ca, Ba, and pH were identified as important influencing factors for the community structure of Sphingomonas, Pseudarthrobacter, Nocardioides, and Thiobacillus. The metabolites such as sucrose, raffinose, L-valine, D-fructose 2, 6-bisphosphate, and oxoglutaric acid were found to have the greatest effect on the bacterial community in the rhizosphere soils for arboreal plants. The results of the study demonstrated that long-term planting for woody plants in gangue dumps could regulate microbial abundance and symbiotic patterns through the accumulation of rhizosphere metabolites in the soil, increase soil enzyme activity, reduce heavy metal levels, and improve the soil environment in coal gangue dumps.

6.
Angew Chem Int Ed Engl ; : e202406233, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591161

RESUMO

The precise recognition and sensing of steroids, a type of vital biomolecules, hold immense practical value across various domains. In this study, we introduced corral[4]BINOLs (C[4]BINOLs), a pair of enantiomeric conjugated deep-cavity hosts, as novel synthetic receptors for binding steroids. Due to the strong hydrophobic effect of their deep nonpolar, chiral cavities, the two enantiomers of C[4]BINOLs demonstrated exceptionally high recognition affinities (up to 1012 M-1) for 16 important steroidal compounds as well as good enantioselectiviy (up to 15.5) in aqueous solutions, establishing them as the most potent known steroid receptors. Harnessing their ultrahigh affinity, remarkable enantioselectivity, and fluorescence emission properties, the two C[4]BINOL enantiomers were employed to compose a fluorescent sensor array which achieved discrimination and sensing of 16 structurally similar steroids at low concentrations.

7.
Biotechnol Adv ; 73: 108354, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38588906

RESUMO

Thraustochytrids are marine microorganisms known for their fast growth and ability to store lipids, making them useful for producing polyunsaturated fatty acids (PUFAs), biodiesel, squalene, and carotenoids. However, the high cost of production, mainly due to expensive fermentation components, limits their wider use. A significant challenge in this context is the need to balance production costs with the value of the end products. This review focuses on integrating the efficient utilization of waste with Thraustochytrids fermentation, including the economic substitution of carbon sources, nitrogen sources, and fermentation water. This approach aligns with the 3Rs principles (reduction, recycling, and reuse). Furthermore, it emphasizes the role of Thraustochytrids in converting waste into lipid chemicals and promoting sustainable circular production models. The aim of this review is to emphasize the value of Thraustochytrids in converting waste into treasure, providing precise cost reduction strategies for future commercial production.

8.
Environ Sci Technol ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639388

RESUMO

Microbial transformation of per- and polyfluoroalkyl substances (PFAS), including fluorotelomer-derived PFAS, by native microbial communities in the environment has been widely documented. However, few studies have identified the key microorganisms and their roles during the PFAS biotransformation processes. This study was undertaken to gain more insight into the structure and function of soil microbial communities that are relevant to PFAS biotransformation. We collected 16S rRNA gene sequencing data from 8:2 fluorotelomer alcohol and 6:2 fluorotelomer sulfonate biotransformation studies conducted in soil microcosms under various redox conditions. Through co-occurrence network analysis, several genera, including Variovorax, Rhodococcus, and Cupriavidus, were found to likely play important roles in the biotransformation of fluorotelomers. Additionally, a metagenomic prediction approach (PICRUSt2) identified functional genes, including 6-oxocyclohex-1-ene-carbonyl-CoA hydrolase, cyclohexa-1,5-dienecarbonyl-CoA hydratase, and a fluoride-proton antiporter gene, that may be involved in defluorination. This study pioneers the application of these bioinformatics tools in the analysis of PFAS biotransformation-related sequencing data. Our findings serve as a foundational reference for investigating enzymatic mechanisms of microbial defluorination that may facilitate the development of efficient microbial consortia and/or pure microbial strains for PFAS biotransformation.

9.
J Toxicol Environ Health A ; 87(10): 448-456, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38557302

RESUMO

Cerebral ischemia-reperfusion injury (CIRI) occurs frequently clinically as a complication following cardiovascular resuscitation resulting in neuronal damage specifically to the hippocampal CA1 region with consequent cognitive impairment. Apoptosis and oxidative stress were proposed as major risk factors associated with CIRI development. Previously, glycosides obtained from Cistanche deserticola (CGs) were shown to play a key role in counteracting CIRI; however, the underlying mechanisms remain to be determined. This study aimed to investigate the neuroprotective effect of CGs on subsequent CIRI in rats. The model of CIRI was established for 2 hr and reperfusion for 24 hr by middle cerebral artery occlusion (MCAO) model. The MCAO rats were used to measure the antioxidant and anti-apoptotic effects of CGs on CIRI. Neurological function was evaluated by the Longa neurological function score test. 2,3,5-Triphenyltetrazolium chloride (TTC) staining was used to detect the area of cerebral infarction. Nissl staining was employed to observe neuronal morphology. TUNEL staining was used to detect neuronal apoptosis, while Western blot determined protein expression levels of factors for apoptosis-related and PI3K/AKT/Nrf2 signaling pathway. Data demonstrated that CGs treatment improved behavioral performance, brain injury, and enhanced antioxidant and anti-apoptosis in CIRI rats. In addition, CGs induced activation of PI3K/AKT/Nrf2 signaling pathway accompanied by inhibition of the expression of apoptosis-related factors. Evidence indicates that CGs amelioration of CIRI involves activation of the PI3K/AKT/Nrf2 signaling pathway associated with increased cellular viability suggesting these glycosides may be considered as an alternative compound for CIRI treatment.


Assuntos
Isquemia Encefálica , Cistanche , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antioxidantes/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fosfatidilinositol 3-Quinases/farmacologia , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Fator 2 Relacionado a NF-E2/farmacologia , Apoptose , Isquemia Encefálica/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Fármacos Neuroprotetores/farmacologia
10.
J Toxicol Environ Health A ; 87(10): 436-447, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38557424

RESUMO

One of the main pathological features noted in Alzheimer's disease (AD) is the presence of plagues of aggregated ß-amyloid (Aß1-42)-peptides. Excess deposition of amyloid-ß oligomers (AßO) are known to promote neuroinflammation. Sequentially, following neuroinflammation astrocytes become activated with cellular characteristics to initiate activated astrocytes. The purpose of this study was to determine whether total flavonoids derived from Dracocephalum moldavica L. (TFDM) inhibited Aß1-42-induced damage attributed to activated C8-D1A astrocytes. Western blotting and ELISA were used to determine the expression of glial fibrillary acidic protein (GFAP), and complement C3 to establish the activation status of astrocytes following induction from exposure to Aß1-42. Data demonstrated that stimulation of C8-D1A astrocytes by treatment with 40 µM Aß1-42 for 24 hr produced significant elevation in protein expression and protein levels of acidic protein (GFAP) and complement C3 accompanied by increased expression and levels of inflammatory cytokines. Treatment with TFDM or the clinically employed drug donepezil in AD therapy reduced production of inflammatory cytokines, and toxicity initiated following activation of C8-D1A astrocytes following exposure to Aß1-42. Therefore, TFDM similar to donepezil inhibited inflammatory secretion in reactive astrocytes, suggesting that TFDM may be considered as a potential compound to be utilized in AD therapy.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Lamiaceae , Humanos , Peptídeos beta-Amiloides/farmacologia , Doença de Alzheimer/tratamento farmacológico , Flavonoides/farmacologia , Complemento C3/metabolismo , Complemento C3/farmacologia , Complemento C3/uso terapêutico , Doenças Neuroinflamatórias , Astrócitos/metabolismo , Donepezila/metabolismo , Donepezila/farmacologia , Donepezila/uso terapêutico , Citocinas/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade
11.
Nat Plants ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600265

RESUMO

NARROW LEAF1 (NAL1) exerts a multifaceted influence on leaf morphology and crop yield. Recent crystal study proposed that histidine 233 (H233) is part of the catalytic triad. Here we report that unlike suggested previously, H234 instead of H233 is a component of the catalytic triad alongside residues D291 and S385 in NAL1. Remarkably, residue 233 unexpectedly plays a pivotal role in regulating NAL1's proteolytic activity. These findings establish a strong foundation for utilizing NAL1 in breeding programs aimed at improving crop yield.

12.
World J Clin Cases ; 12(7): 1227-1234, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38524502

RESUMO

BACKGROUND: Despite being one of the most prevalent sleep disorders, obstructive sleep apnea hypoventilation syndrome (OSAHS) has limited information on its immunologic foundation. The immunological underpinnings of certain major psychiatric diseases have been uncovered in recent years thanks to the extensive use of genome-wide association studies (GWAS) and genotyping techniques using high-density genetic markers (e.g., SNP or CNVs). But this tactic hasn't yet been applied to OSAHS. Using a Mendelian randomization analysis, we analyzed the causal link between immune cells and the illness in order to comprehend the immunological bases of OSAHS. AIM: To investigate the immune cells' association with OSAHS via genetic methods, guiding future clinical research. METHODS: A comprehensive two-sample mendelian randomization study was conducted to investigate the causal relationship between immune cell characteristics and OSAHS. Summary statistics for each immune cell feature were obtained from the GWAS catalog. Information on 731 immune cell properties, such as morphologic parameters, median fluorescence intensity, absolute cellular, and relative cellular, was compiled using publicly available genetic databases. The results' robustness, heterogeneity, and horizontal pleiotropy were confirmed using extensive sensitivity examination. RESULTS: Following false discovery rate (FDR) correction, no statistically significant effect of OSAHS on immunophenotypes was observed. However, two lymphocyte subsets were found to have a significant association with the risk of OSAHS: Basophil %CD33dim HLA DR- CD66b- (OR = 1.03, 95%CI = 1.01-1.03, P < 0.001); CD38 on IgD+ CD24- B cell (OR = 1.04, 95%CI = 1.02-1.04, P = 0.019). CONCLUSION: This study shows a strong link between immune cells and OSAHS through a gene approach, thus offering direction for potential future medical research.

13.
World J Gastroenterol ; 30(8): 881-900, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38516248

RESUMO

BACKGROUND: Immune dysregulation and metabolic derangement have been recognized as key factors that contribute to the progression of hepatitis B virus (HBV)-related acute-on-chronic liver failure (ACLF). However, the mechanisms underlying immune and metabolic derangement in patients with advanced HBV-ACLF are unclear. AIM: To identify the bioenergetic alterations in the liver of patients with HBV-ACLF causing hepatic immune dysregulation and metabolic disorders. METHODS: Liver samples were collected from 16 healthy donors (HDs) and 17 advanced HBV-ACLF patients who were eligible for liver transplantation. The mitochondrial ultrastructure, metabolic characteristics, and immune microenvironment of the liver were assessed. More focus was given to organic acid metabolism as well as the function and subpopulations of macrophages in patients with HBV-ACLF. RESULTS: Compared with HDs, there was extensive hepatocyte necrosis, immune cell infiltration, and ductular reaction in patients with ACLF. In patients, the liver suffered severe hypoxia, as evidenced by increased expression of hypoxia-inducible factor-1α. Swollen mitochondria and cristae were observed in the liver of patients. The number, length, width, and area of mitochondria were adaptively increased in hepatocytes. Targeted metabolomics analysis revealed that mitochondrial oxidative phosphorylation decreased, while anaerobic glycolysis was enhanced in patients with HBV-ACLF. These findings suggested that, to a greater extent, hepa-tocytes used the extra-mitochondrial glycolytic pathway as an energy source. Patients with HBV-ACLF had elevated levels of chemokine C-C motif ligand 2 in the liver homogenate, which stimulates peripheral monocyte infiltration into the liver. Characterization and functional analysis of macrophage subsets revealed that patients with ACLF had a high abundance of CD68+ HLA-DR+ macrophages and elevated levels of both interleukin-1ß and transforming growth factor-ß1 in their livers. The abundance of CD206+ CD163+ macrophages and expression of interleukin-10 decreased. The correlation analysis revealed that hepatic organic acid metabolites were closely associated with macrophage-derived cytokines/chemokines. CONCLUSION: The results indicated that bioenergetic alteration driven by hypoxia and mitochondrial dysfunction affects hepatic immune and metabolic remodeling, leading to advanced HBV-ACLF. These findings highlight a new therapeutic target for improving the treatment of HBV-ACLF.


Assuntos
Insuficiência Hepática Crônica Agudizada , Hepatite B Crônica , Doenças Mitocondriais , Humanos , Vírus da Hepatite B , Hipóxia , Doenças Mitocondriais/complicações
14.
World J Clin Cases ; 12(6): 1076-1083, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38464920

RESUMO

BACKGROUND: Hip fractures account for 23.8% of all fractures in patients over the age of 75 years. More than half of these patients are older than 80 years. Bipolar hemiarthroplasty (BHA) was established as an effective management option for these patients. Various approaches can be used for the BHA procedure. However, there is a high risk of postoperative dislocation. The conjoined tendon-preserving posterior (CPP) lateral approach was introduced to reduce postoperative dislocation rates. AIM: To evaluate the effectiveness and safety of the CPP lateral approach for BHA in elderly patients. METHODS: We retrospectively analyzed medical data from 80 patients with displaced femoral neck fractures who underwent BHA. The patients were followed up for at least 1 year. Among the 80 patients, 57 (71.3%) were female. The time to operation averaged 2.3 d (range: 1-5 d). The mean age was 80.5 years (range: 67-90 years), and the mean body mass index was 24.9 kg/m2 (range: 17-36 kg/m2). According to the Garden classification, 42.5% of patients were type Ⅲ and 57.5% of patients were type Ⅳ. Uncemented bipolar hip prostheses were used for all patients. Torn conjoined tendons, dislocations, and adverse complications during and after surgery were recorded. RESULTS: The mean postoperative follow-up time was 15.3 months (range: 12-18 months). The average surgery time was 52 min (range: 40-70 min) with an average blood loss of 120 mL (range: 80-320 mL). The transfusion rate was 10% (8 of 80 patients). The gemellus inferior was torn in 4 patients (5%), while it was difficult to identify in 2 patients (2.5%) during surgery. The posterior capsule was punctured by the fractured femoral neck in 3 patients, but the conjoined tendon and the piriformis tendon remained intact. No patients had stem varus greater than 3 degrees or femoral fracture. There were no patients with stem subsidence more than 5 mm at the last follow-up. No postoperative dislocations were observed throughout the follow-up period. No significance was found between preoperative and postoperative mean Health Service System scores (87.30 ± 2.98 vs 86.10 ± 6.10, t = 1.89, P = 0.063). CONCLUSION: The CPP lateral approach can effectively reduce the incidence of postoperative dislocation without increasing perioperative complications. For surgeons familiar with the posterior lateral approach, there is no need for additional surgical instruments, and it does not increase surgical difficulty.

15.
J Colloid Interface Sci ; 665: 68-79, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38513409

RESUMO

Optimized fabrication of Z-scheme photocatalyst based on MOF materials offers sustainable energy generation and environmental improvement due to their attractive properties. The Z-scheme heterojunctions consisting of UiO-66 cubes covered with Zn0.5Cd0.5S nanoparticles were fabricated by a facile solvothermal method. Thanks to the Z-scheme carrier transport under simulated sunlight irradiation, UiO-66@Zn0.5Cd0.5S exhibited enhanced photocatalytic performance of H2 generation synchronized with organic pollutant degradation in fluoroquinolone antibiotic wastewater. Synergistically, the highest comprehensive performance was obtained in ciprofloxacin solution. The H2 yield reached 224 µmol∙ g-1∙ h-1 and simultaneously the removal efficiency was up to 83.6 %. The degradation pathways revealed that the process of piperazine ring cleavage and decarboxylation also generates H protons, further promoting the production of H2. Therefore, the effective spatial separation and transfer of the photoinduced carriers are attributed to the good band structure, large specific surface area, and cooperative reduction and oxidation reactions of UiO-66@Zn0.5Cd0.5S, resulting in significant photocatalytic activity. The toxicity assessment of antibiotics and intermediate products during the photocatalytic reaction also verifies the reduction of environmental risk. This study highlights a promising way to expand the application of the MOFs-based photocatalyst in clean energy conversion coupling with water remediation.

16.
Comput Methods Programs Biomed ; 248: 108137, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520784

RESUMO

BACKGROUND AND OBJECTIVE: Clinical pharmacological modeling and statistical analysis software is an essential basic tool for drug development and personalized drug therapy. The learning curve of current basic tools is steep and unfriendly to beginners. The curve is even more challenging in cases of significant individual differences or measurement errors in data, resulting in difficulties in accurately estimating pharmacokinetic parameters by existing fitting algorithms. Hence, this study aims to explore a new optimized parameter fitting algorithm that reduces the sensitivity of the model to initial values and integrate it into the CPhaMAS platform, a user-friendly online application for pharmacokinetic data analysis. METHODS: In this study, we proposed an optimized Nelder-Mead method that reinitializes simplex vertices when trapped in local solutions and integrated it into the CPhaMAS platform. The CPhaMAS, an online platform for pharmacokinetic data analysis, includes three modules: compartment model analysis, non-compartment analysis (NCA) and bioequivalence/bioavailability (BE/BA) analysis. Our proposed CPhaMAS platform was evaluated and compared with existing WinNonlin. RESULTS: The platform was easy to learn and did not require code programming. The accuracy investigation found that the optimized Nelder-Mead method of the CPhaMAS platform showed better accuracy (smaller mean relative error and higher R2) in two-compartment and extravascular administration models when the initial value was set to true and abnormal values (10 times larger or smaller than the true value) compared with the WinNonlin. The mean relative error of the NCA calculation parameters of CPhaMAS and WinNonlin was <0.0001 %. When calculating BE for conventional, high-variability and narrow-therapeutic drugs. The main statistical parameters of the parameters Cmax, AUCt, and AUCinf in CPhaMAS have a mean relative error of <0.01% compared to WinNonLin. CONCLUSIONS: In summary, CPhaMAS is a user-friendly platform with relatively accurate algorithms. It is a powerful tool for analysing pharmacokinetic data for new drug development and precision medicine.


Assuntos
Algoritmos , Software , Modelos Teóricos , Preparações Farmacêuticas , Projetos de Pesquisa
17.
Cytotechnology ; 76(2): 153-166, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38495298

RESUMO

Degradation of extracellular matrix (ECM), reactive oxygen species (ROS) production, and inflammation are critical players in the pathogenesis of intervertebral disc degeneration (IDD). Evodiamine exerts functions in inhibiting inflammation and maintaining mitochondrial antioxidant functions. However, the biological functions of evodiamine and its related mechanisms in IDD progression remain unknown. The IDD-like conditions in vivo were stimulated via needle puncture. Hematoxylin and eosin staining, Safranin O/Fast Green staining and Alcian staining were performed to determine the degenerative status. The primary nucleus pulposus cells (NPCs) were isolated from Sprague-Dawley rats and then treated with tert-butyl peroxide (TBHP) to induce cellular senescence and oxidative stress. The cell viability was assessed by cell counting kit-8 assays. The mitochondria-derived ROS in NPCs was evaluated by MitoSOX staining. The mitochondrial membrane potential in NPCs was identified by JC-1 staining and flow cytometry. The expression of collagen II in NPCs was measured by immunofluorescence staining. The levels of mRNAs and proteins were measured by RT-qPCR and western blotting. The Nrf2 expression in rat nucleus pulposus tissues was measured by immunohistochemistry staining. Evodiamine alleviated TBHP-induced mitochondrial dysfunctions in NPCs. The enhancing effect of TBHP on the ECM degradation was reversed by evodiamine. The TBHP-stimulated inflammatory response was ameliorated by evodiamine. Evodiamine alleviated the IDD process in the puncture-induced rat model. Evodiamine promoted the activation of Nrf2 pathway and inactivated the MAPK pathway in NPCs. In conclusion, evodiamine ameliorates the progression of IDD by inhibiting mitochondrial dysfunctions, ECM degradation and inflammation via the Nrf2/HO-1 and MAPK pathways.

18.
Biotechnol J ; 19(3): e2300612, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38472102

RESUMO

Schizochytrium sp. is a heterotrophic microorganism capable of accumulating polyunsaturated fatty acids and has achieved industrial production of docosahexaenoic acid (DHA). It also has the potential for eicosapentaenoic acid (EPA) production. In this study, it was found that the cell growth, lipid synthesis and fatty acid composition of Schizochytrium sp. were significantly affected by the level of cobalamin in the medium, especially with regard to the content of EPA in the fatty acids. The content of EPA in the fatty acids increased 17.91 times, reaching 12.00%, but cell growth and lipid synthesis were significantly inhibited under cobalamin deficiency. The response mechanism for this phenomenon was revealed through combined lipidomic and transcriptomic analysis. Although cell growth was inhibited under cobalamin deficiency, the genes encoding key enzymes in central carbon metabolism were still up-regulated to provide precursors (Acetyl-CoA) and reducing power (NADPH) for the synthesis and accumulation of fatty acids. Moreover, the main lipid subclasses observed during cobalamin deficiency were glycerolipids (including glycerophospholipids), with EPA primarily distributed in them. The genes involved in the biosynthesis of these lipid subclasses were significantly up-regulated, such as the key enzymes in the Kennedy pathway for the synthesis of triglycerides. Thus, this study provided insights into the specific response of Schizochytrium sp. to cobalamin deficiency and identified a subset of new genes that can be engineered for modification.


Assuntos
Ácido Eicosapentaenoico , Lipidômica , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos , Perfilação da Expressão Gênica , Vitamina B 12
19.
Cancer Drug Resist ; 7: 9, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510750

RESUMO

Aim: Circular RNAs (circRNAs) have been found to be involved in tumor progression, but their role in colorectal cancer (CRC) immune escape remains to be elucidated. Methods: circRNAs differentially expressed in responsive and resistant CRC tissues to programmed cell death 1 (PD-1) antibody therapy were identified by microarray analysis. The clinical and pathological significance of circNCOA3 was validated in a separate cohort of CRC samples. The function of circNCOA3 was explored experimentally. RNA immunoprecipitation and luciferase activity assays were conducted to identify downstream targets of circNCOA3. Results: The circNCOA3 was markedly overexpressed in CRC samples resistant to PD-1 blockade. circNCOA3 expression was significantly correlated with adverse tumor phenotypes and poor outcomes in CRC patients. Knockdown of circNCOA3 expression markedly suppressed the proliferative and invasive capability of CRC cells. Moreover, knockdown of circNCOA3 increased the proportion of CD8+ T cells while decreasing the proportion of myeloid-derived suppressor cells (MDSCs). Knockdown of circNCOA3 inhibited tumor growth and increased the sensitivity to PD-1 antibody treatment in mouse tumor models. Further studies revealed that circNCOA3 acted as a competing endogenous RNA (ceRNA) for miR-203a-3p.1 to influence the level of CXCL1. Conclusion: Our findings indicate that circNCOA3 might be useful as a potential biomarker to predict the efficacy and prognosis of CRC patients treated with anti-PD-1 therapy.

20.
Protein Sci ; 33(4): e4937, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501488

RESUMO

Cellulosomes are intricate cellulose-degrading multi-enzymatic complexes produced by anaerobic bacteria, which are valuable for bioenergy development and biotechnology. Cellulosome assembly relies on the selective interaction between cohesin modules in structural scaffolding proteins (scaffoldins) and dockerin modules in enzymes. Although the number of tandem cohesins in the scaffoldins is believed to determine the complexity of the cellulosomes, tandem dockerins also exist, albeit very rare, in some cellulosomal components whose assembly and functional roles are currently unclear. In this study, we characterized the structure and mode of assembly of a tandem bimodular double-dockerin, which is connected to a putative S8 protease in the cellulosome-producing bacterium, Clostridium thermocellum. Crystal and NMR structures of the double-dockerin revealed two typical type I dockerin folds with significant interactions between them. Interaction analysis by isothermal titration calorimetry and NMR titration experiments revealed that the double-dockerin displays a preference for binding to the cell-wall anchoring scaffoldin ScaD through the first dockerin with a canonical dual-binding mode, while the second dockerin module was unable to bind to any of the tested cohesins. Surprisingly, the double-dockerin showed a much higher affinity to a cohesin from the CipC scaffoldin of Clostridium cellulolyticum than to the resident cohesins from C. thermocellum. These results contribute valuable insights into the structure and assembly of the double-dockerin module, and provide the basis for further functional studies on multiple-dockerin modules and cellulosomal proteases, thus highlighting the complexity and diversity of cellulosomal components.


Assuntos
Clostridium thermocellum , 60634 , Clostridium thermocellum/química , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Complexos Multienzimáticos , Proteínas de Bactérias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...